
LLNL-JRNL-643260

The value of spatial information of for
determining well placement: a geothermal
example

W. J. Trainor-Guitton, G. M. Hoversten, A.
Ramirez, J. Roberts, E. Juliusson, K. Key, R.
Mellors

September 3, 2013

Geophysics



Disclaimer 
 

This document was prepared as an account of work sponsored by an agency of the United States 
government. Neither the United States government nor Lawrence Livermore National Security, LLC, 
nor any of their employees makes any warranty, expressed or implied, or assumes any legal liability or 
responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or 
process disclosed, or represents that its use would not infringe privately owned rights. Reference herein 
to any specific commercial product, process, or service by trade name, trademark, manufacturer, or 
otherwise does not necessarily constitute or imply its endorsement, recommendation, or favoring by the 
United States government or Lawrence Livermore National Security, LLC. The views and opinions of 
authors expressed herein do not necessarily state or reflect those of the United States government or 
Lawrence Livermore National Security, LLC, and shall not be used for advertising or product 
endorsement purposes. 
 



1 

 

The value of spatial information of for determining well placement: a geothermal example
1
 

 

Whitney J. Trainor-Guitton
2
, G. Michael Hoversten

3
,
 
Abelardo Ramirez

2
, Jeffery Roberts

2
, Egill Juliusson

4
, 

Kerry Key
5
 and Rob Mellors

2
 

 
1
LLNL-TBD 

2
Lawrence Livermore National Laboratory 

7000 East Avenue  

Livermore, CA, 94550, USA 

e-mail: trainorguitton@llnl.gov 

 
3
ChevronTexaco 

6001 Bollinger Canyon Rd. 

San Ramon, CA 94583 
 

4
Landsvirkjun 

Háaleitisbraut 68 • 103  

Reykjavík, Iceland 

 
5
Scripps Institution of Oceanography 

University of California San Diego  

9500 Gilman Drive 

La Jolla, CA 92093 

 

Keywords: value of information, magnetotellurics, blind geothermal prospect  

Abstract 

Geophysical surveys improve upon simple well observations by providing spatial 

coverage.  This provides information about geologic structure and can aid important decisions 

such as where to drill an additional well.  We present a value of information (VOI) methodology 

designed specifically to aid these kind of decisions. We introduce an improvement from previous 

VOI methodologies by accounting for the effects of uncertainties associated with 2D geophysical 

inversion. VOI assesses the worth of information in terms of how it can improve the decision 

maker’s likelihood of a higher-valued outcome. We demonstrate how VOI can be applied to 

spatial data using an exploration example for hidden geothermal resources. This methodology is 

applicable for spatial decisions for other exploration decisions (e.g. oil). We evaluate how well 

the magnetotellurics (MT) technique is able to delineate the lateral position of electrically 
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conductive materials that are indicative of a hidden resource. The conductive structure (referred 

to as the clay cap) represents where geothermal alteration has occurred.  

We create prior earth models that include a clay cap in different lateral locations. We use 

these prior models to numerically simulate the data collection, noise, inversion and interpretation 

of the MT technique. MT’s ability to delineate the correct lateral location can be quantified by 

comparing the true location in each prior model to what location was interpreted from each 

respective inverted model. We consider additional complexity in the earth models by adding 

more electrical conductors (not associated with the clay cap) and deeper targets. Both degrade 

the ability of the MT technique (the signal and inversion) to locate the clay cap thereby 

decreasing the VOI. Our results also demonstrate how VOI depends on whether or not a resource 

still exists below the clay cap, since the clay cap is only a potential indicator of economic 

temperatures. 

Table 1: Table of Symbols 

Clay cap location x 

Index of Clay Cap Locations i 

Total number of Considered Clay Cap 

Locations 
N 

Decision alternative a 

Existence or Non-Existence of Resource   

Value: metric to define outcome of 

decision 
v 

Vector of earth parameters z 

Index of models with same clay cap 

location 
t 

Total number of realizations with clay cap 

i 
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Decision predictor/function (eg drilling)   ( ) 

Geophysical forward modeling (i.e. MT 

simulation) 
 ( ) 

Electrical resistivity model ρ 

Synthetic data d 

Synthetic data with noise  ̃ 

Inverted electrical resistivity model  ̃ 

Automatic interpretation function  ( ) 

Interpreted Location of Clay Cap  ̃ 

Index of interpreted Clay Cap Locations j 

Prior Value Vprior 

Value with Perfect Information Vperfect 

Value with Imperfect Information Vimperfect 

Value of Imperfect Information VOIimperfect 

 

Introduction 

Earth scientists inherently see the value of geophysical data; they appreciate that 

knowledge, although imperfect due to noise, the challenges of inversion, etc., is gained from the 

previous incomplete state of information. Geophysical surveys provide spatial coverage that 

sparse, expensive wells cannot. In many situations, however, it may be difficult to objectively 

quantify and demonstrate to decision-makers if knowledge has been (or can be) gained. A 

methodology known as value of information (VOI) objectively quantifies the value of a 

particular information source by appraising its relevance and reliability. VOI provides a metric 

that derives from the field of decision analysis and declares that an information source has value 

if it can improve a decision-maker’s probability of making decisions with higher-valued 

outcomes (Howard, 1966; Pratt et al., 1995).  
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Bratvold et al. (2009) provides a review of the applications of VOI in the oil and gas 

industry, which includes some VOI demonstrations for geophysical data. Houck and Pavlov 

(2006) and Houck  (2004, 2007) all use 1D reservoir models to evaluate the value of seismic 

amplitude data, controlled-source electromagnetics (CSEM) and 4D seismic data respectively. 

Pinto et al. (2011) evaluate the VOI of 4D seismic for two discrete reservoir cases. A very 

important shortcoming of these examples is that spatial variability and the associated uncertainty 

are not explicitly represented. In other words, the uncertainty modeling doesn’t include different 

possible spatial distributions of reservoir parameters and how they would affect either the 

reliability of information from geophysical sources or the outcome of any exploration decision 

(i.e. where to drill).  

Recently, spatial uncertainty has been included in VOI assessments of geophysical 

techniques. Eidsvik et al. (2008) used statistical rock physics models and spatial dependence 

within a VOI framework to decide whether or not to drill for oil. Spatial dependence is included 

in the 2D grids representing the porosity and saturation of the reservoir through a covariance 

model. At each of the grid locations, CSEM and seismic amplitude-versus-offset (AVO) data are 

drawn from likelihood models that represent the link between the reservoir properties and the 

geophysical attributes. Their method attempts to preserve spatial dependence through the 

spatially correlated porosity and saturation field. Bhattacharjya et al. (2010) present a VOI 

methodology for spatial decisions, where the spatial dependence of reservoir sands and shales are 

modeled as a Markov random field, and the value of seismic data is estimated for informing 

drilling decisions. Trainor-Guitton et al. (2011),  Trainor-Guitton et al. (2013) and Trainor-

Guitton et al. (2013) all include spatial uncertainty of aquifer properties for evaluating the VOI 

of different geophysical techniques for groundwater sustainability decisions. However, none of 
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these studies include multi-dimensional geophysical inversions and therefore, the uncertainties 

introduced by inversion haven’t been included in the VOI assessment.  

We present the first VOI methodology that includes the multi-dimensional nature of 

geophysical information with interpretation. This is significant as 2D or 3D inversion and 

interpretation make it possible for geophysical information to aid in spatial decision-making. A 

spatial decision can be defined as any decision whose outcome depends on the spatial 

distribution of some property (Trainor-Guitton, 2010). Our methodology recognizes that often 

the raw data from a geophysical source is not useful for spatial decisions; thus, the geophysical 

“information” will typically consist of the data, the inversion, and the interpretation in order to 

link the geophysical attributes to a parameter that would directly affect a decision outcome (e.g. 

a geologic horizon or unconformity). Here we present a VOI analysis that is applicable to 

decisions related to spatial exploration such as: “where to drill?” 

Figure 1 graphically depicts the concepts behind VOI. Let’s consider we are faced with 

some generic decision to most effectively exploit a subsurface resource (e.g. oil, minerals, gas, 

water, etc.) and the largest uncertainty is the resource’s location. The horizontal axis from left to 

right represents lower to higher gains (utility or monetary returns) as outcomes from this generic 

decision. The lowest expected outcome (or calculated average) of the decision is shown to be 

when uncertainty is ignored (Figure 1a). For example, we could choose to disregard our 

ignorance (or our uncertainty) regarding the location of some subsurface resource. The next 

higher expected outcome (to the right) occurs when the current information and its uncertainty 

are accounted for when making the decision (Figure 1b). We will call this quantity the prior 

value: Vprior. Current information could represent the geologist’s perspective on the likely 

locations of the resource. Next, we consider the highest expected outcome (furthest right oval: 
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Figure 1c), which is possible when “perfect information” is available before making our 

decision. We will call this quantity the value with perfect information: Vperfect. This concept 

conjectures that an infallible tool or information source exists such that it perfectly reveals 

(without errors or noise) the location of the sought-after resource. In other words, with perfect 

information, we will always place a well in exactly the right place to recover the resource. 

 

By comparing Vperfect (Figure 1c) and Vprior (Figure 1b), one can quantify if there is an 

increase in the expected outcome when making the decision with perfect information versus the 

current information. This potential increase is the value of perfect information: VOIperfect. 

Therefore, in its simplest form, the VOI equation can be expressed as:  

                                 (1) 

This expression makes some assumptions about the decision-maker’s risk tolerance and 

utility function (Raiffa and Schlaifer, 1961). Value, V, is the metric used to quantify the outcome 

of a decision; the higher the value, the more “successful” an outcome of a decision is. Usually 

this is in monetary terms but it could also be in physical quantities (barrels of oil produced, 

BTU’s produced, etc). The VOI of a particular technique in monetary terms can then be 

compared to the cost of acquiring that information; if the VOI greater than the cost, it is deemed 

a good decision to purchase that information. 

The value with imperfect information (Vimperfect) is represented by the oval of Figure 1d.  

This quantity accepts that the “message” from the information source being evaluated (e.g. 

seismic, controlled source EM) will not always accurately identify the location of the resource. 

Therefore, this quantity is depicted as lower-valued (to the left in Figure 1) compared to the 

value with perfect information (Vperfect: Figure 1c). The value of imperfect information, 
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VOIimperfect, can be quantified by comparing it to Vprior. In other words, if you can account for the 

inaccuracies of the information source and demonstrate that it would still increase the expected 

outcome over a decision made with the current information, the imperfect information will be 

deemed valuable (Equation 1).  

In order to obtain a Vimperfect measure, one must estimate the reliability of the information 

source. Bratvold et al. (2009) describe how quantitative methods are needed to evaluate the 

information reliability. We will consider the reliability of the geophysical source to spatially 

resolve a resource target. Our approach includes the effects of the inversion image resolution and 

its impact on the information reliability. Therefore, we include spatial uncertainty in the VOI 

methodology thereby improving the VOI metrics used for exploration decisions. 

Hidden Geothermal Resource 

We demonstrate our spatial VOI methodology using a hypothetical geothermal 

exploration example. We suggest that our methodology is transferable to other applications. Our 

example is motivated by Cumming (2009) who conceptualized hidden (or blind) geothermal 

resources. Figure 2 demonstrates a possible blind/hidden geothermal resource where no surface 

expression exists to indicate a possible geothermal resource. His model (Figure 2) demonstrates a 

scenario where faults and fractures allow for the circulation of hot water to accessible depths. As 

a result, smectite and illite clays are formed just above the shallowest depths where the hot water 

circulates.  

Similar to oil exploration, the geothermal community has employed geophysical surveys 

to characterize the subsurface with to improve its knowledge of subsurface reservoirs and to 

reduce their exploration risks. DC electrical resistivity and self-potential techniques have been 
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employed to decipher potential flow paths for hot water (Richards et al., 2010), whereas micro 

seismic travel times (Wu and Lees, 1999) and magnetotellurics (MT) data (Garg et al., 2007; 

Newman et al., 2008) have been used to infer the 3D geologic structure of geothermal areas.  

Also like oil exploration, geothermal prospecting with geophysical techniques is 

complicated by challenges related to the non-unique relationship of geophysical attributes in the 

subsurface and the geothermal reservoir parameters. Historically, the MT technique has been 

used to delineate zones of low resistive materials that can be indicative of alteration caused by 

the circulation of hot fluids (Gunderson et al., 2000). This alteration is often referred to as the 

clay cap; we adopt this terminology here. However, low resistivity zones can also be created by 

the presence of brines and/or clay-rich sediments (Newman et al., 2008; Ucok et al., 1980).  

Another complicating factor is that the clay cap alteration reflects the historical high temperature 

of the system. Therefore, the existence of clay cap does not ensure that economic temperatures 

still exist below it. Karlsdóttir et al. (2012) describe how the resistivity alone cannot confirm a 

viable geothermal resource: 

The resistivity reflects the alteration caused by the heating of the rocks and reflects the 

peak temperature experienced by the system, being it at the present or in the past. … The 

resistivity structure reflects the temperature, provided there is equilibrium between 

alteration and present temperature. In case of cooling the alteration may remain and the 

resistivity will reflect the temperature at which the alteration was formed. Whether the 

resistivity (and the alteration) indicates the present temperature of the system will only be 

confirmed by drilling. 
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Information Source considered: Magnetotellurics 

MT has strengths and weaknesses when used to explore for geothermal resources. Figure 

3, also from Cumming (2009), provides a conceptual model of electrical resistivity for the 

geologic representation of Figure 2. The hidden resource is at the apex of the isotherms which 

coincides with the concave-side of the 10 ohm-m clay cap (yellow). Therefore, for our modeling 

and VOI demonstration purposes, this clay cap (yellow) is the key potential indicator of the 

resource.  

The MT measurements may help us determine where a clay cap exists, but they can’t tell 

us definitively about the temperature below the cap. Additionally, the cap’s lower electrical 

resistivity tends to shunt electrical currents and greatly reduces sensitivity to the properties of the 

deeper reservoir properties. The VOI method described here will allow us to quantify both MT’s 

usefulness (spatial coverage and sensitivity to low resistive clays) and limitations (low resistivity 

is not uniquely associated with higher temperature, i.e. whether a resource exists or not).  

Thus, the work presented here will use this geothermal example to demonstrate a spatial 

VOI methodology.  The next section (Problem Description) describes how the prior uncertainty 

of the subsurface (i.e. the state of knowledge before the MT survey data is available) is 

represented with simplified geothermal reservoir models that represent different possible 

locations of the resource. The next section will also describe Vprior , which captures the expected 

outcome of a decision taken without the benefit of MT data. In the Methodology section, we 

devise a method for estimating MT’s reliability to determine the location of the geothermal 

reservoirs. This step involves simulating the MT response using the prior models and inverting 

this data to construct electrical resistivity images. This section also describes how the value with 

imperfect information (Vimperfect) is calculated using the reliability. The Results section presents 
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the value of imperfect information results for several different reliabilities and priors, along with 

complexities added to the prior models. Through the decision uncertainty and the models 

included in the prior, we will demonstrate how VOI can underscore the strengths and weakness 

of a particular information source.  

Problem Description: Uncertainty of Possible Hidden Resource (Clay 

Cap) Location and Where to drill? 

Figure 4 shows a decision tree that depicts the decision scenario that we have described. 

The tree represents the decision-to-outcome process chronologically from left to right. First a 

decision of where to drill is taken (extreme left). The final outcome (extreme right) will depend 

on where the clay cap is and if a resource exists under the cap.  For this work, we only consider 

how the MT source can help detect the location of the clay cap. In the Results Section, we will 

introduce how we account for the probability of the resource existing (represented by   (    )) 

given the existence of the clay cap. 

 

To represent our uncertainty in the location of the clay cap, we create prior models with 

clay caps of varying lateral locations. We assume the hidden resource below the clay cap can 

only exist in one of N discrete locations.  Within our prior models, the clay cap is represented at 

N=15 different locations, where the horizontal location (x) of the middle of the clay cap varies 

between -3500m and  +3500m. Let us represent each model by  

  ( )(    )             (2)  

where vector z contains the electrical resistivity and any other relevant properties (i.e. 

temperature, porosity, etc.) of the model. Initially, we assume that the low electrical resistivity of 
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the clay cap is equivalent to higher temperatures and higher permeability thanks to faults and 

fractures shown in Figure 2. Figure 5 demonstrates model  ( )(   ); the variable x identifies 

the location of the “throat” of the clay cap. Figure 3 portrays this “throat” as the shallowest 

location with the highest isotherm. Therefore, the xi location represents the shallowest access to 

the potential resource. The clay cap in all models ranges between 0.5 and 1.5 km depth and is 

3km wide. 

We assume that one can only consider drilling in these N locations, if at all. Thus, the 

spatial alternatives (represented by index a in Figure 4) consist of N possible clay cap locations 

where one may choose to drill or not. These are represented as the columns in Table 2, while the 

different possible clay cap locations (model categories xi) are represented by the rows of Table 2. 

The last column of the table represents the option to not drill at all. 

Table 2: Table of Decisions alternatives (a) and value outcomes (v) assuming resource exists under clay cap 

Alternatives → 

Clay Cap 

Locations (in 

models) ↓ 

Drill @ 

x=+3500m 

(a=1) 

Drill @ 

x=+3000m 

(a=2) 

… Drill @ 

x= -3000m 

(a=14) 

Drill @ 

x= -3500m 

(a=15) 

Don’t Drill 

(a=16) 

Clay Cap @ 

x= +3500m 
Highest 

Value $$ 

Value $ … LOSS LOSS 0 

Clay Cap @ 

x= +3000m 
Value $ Highest 

Value $$ 

… LOSS LOSS 0 

⁞    ⁞ ⁞ ⁞ 
Clay Cap @ 

x= -3000m 
LOSS LOSS … Highest 

Value $$ 

Value $ 0 

Clay Cap @ 

x= -3500m 
LOSS LOSS … Value $ Highest 

Value $$ 

0 

 

The outcome of choosing a decision alternative a with a clay location of xi, is quantified 

with the “value outcome metric.” The value metric allows for comparison between outcomes 

from different decision alternatives, which can be represented by function ga.  
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   (  )    ( (    ))  

                      

(3)  

Table 2 shows that the highest outcomes (most successful decisions) occur along the 

diagonal: when the drilling location aligns with the actual location of the middle of the clay cap.  

The value outcomes then drop off as you move away from the diagonal signifying the mismatch 

between the possible resource location and the drilling location. 

Vprior: the best decision option given the prior uncertainty   

Decision analysis concepts are often described in terms of lotteries and prizes (Pratt et al, 

1995). By choosing to drill or not, a decision maker is choosing whether or not to participate in a 

lottery with certain perceived chances of winning a prize (drilling into a profitable reservoir); 

however, this lottery also involves the chances of losing money (missing the resource or drilling 

into an uneconomic reservoir). By utilizing Vprior, a decision-maker can logically determine when 

one should participate in this lottery given both the prior uncertainties and possible gains and 

losses. 

Vprior is only dependent on the current state of uncertainty (  (    )) and the outcomes 

of the decision (  (  )):  

 
           

 
(∑  (    )  (  )

 

   

)            

(4)  

The Vprior expression identifies which decision alternative will on average result with the 

highest value (most successful outcome).  The prior distribution is used to calculate a weighted 

average inside the summation and the    
 

 finds the highest outcome value among all the 

different spatial alternatives a.  
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Vprior is inherently a very subjective measure since the prior state of knowledge is usually 

characterized by an unknown probability distribution. Therefore, we test three different prior 

distributions and two different value outcome matrices (Table 2) and how they affect the final 

VOI imperfect. Figure 6 displays the three prior distributions. The uniform distribution (solid line) 

declares that there’s an equal likelihood that the clay cap exists at any of the N locations between 

-3,500m and +3,500m.  The two Gaussian distributions (dashed and dotted curves in Figure 5) 

reflect a belief that the resource is centered at x=0.  The Gaussian with the smaller standard 

deviation (dotted curve) reflects less uncertainty of the location than the Gaussian with the larger 

standard deviation (dashed curve). 

 

Two different value outcome matrices are used to compare their influences VOIimperfect. 

Figure 7 displays a value outcome matrix that penalizes drilling decisions that miss the clay cap 

by ≥1500m. Alternatively, Figure 8 is a more “forgiving” value outcome matrix, in that losses 

are not incurred until the drilling location is farther (≥2,000m) from the actual location of the 

clay cap. The individual values in Figure 7 and Figure 8 are arbitrary and can be replaced by 

more realistic dollar amounts in order to represent specific locations or particular drilling 

applications. 

 

Table 3 contains the resulting six different Vprior’s using the value outcomes of both 

Figure 7 and Figure 8. The prior uncertainty of the location of the clay cap decreases down the 

rows of the Table 3 and the overall individual value outcomes are greater in the furthest right 

column. Therefore, Vprior is lowest in the top left and highest in the bottom right of the table. This 

makes sense because the uniform distribution describes a completely uninformative prior. 

Therefore entering the “geothermal lottery” is quite risky. However, if the uncertainty of the clay 
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cap location decreases (represented by the Gaussian distributions) then the Vprior increases, 

particularly with a smaller standard deviation (last row). These Gaussian distributions could 

represent a situation where prior geological or well information exists that indicates a possible 

clay cap location. The last column uses the individual value outcomes that drop-off more slowly 

for increasing mismatches between the drilling and the clay cap locations (the off-diagonals of 

Table 2). Therefore, there is less risk of a monetary loss for the right column and all the Vprior’s 

are higher in this column.  

Table 3: Vprior for different prior uncertainties (rows) and different individual value outcomes (columns).  

Prior Distribution ↓   (  ): Gains drop quickly 

(Figure 7) 

  (  ): Gains drop off slowly 

(Figure 8) 

Uniform Prior $0 $0 

Gaussian Prior 

(μ=0m, σ
2
=1800) 

$0 $50,276 

Gaussian Prior 

(μ=0m, σ
2
=900) 

$109,534 $293,603 

 

Vperfect: Value with perfect information 

The value of perfect information (VOIperfect) provides an upper bound the utility benefits 

that a given information source could offer, given the prior uncertainties and modeled value 

outcomes. Perfect information for this example assumes that some measurement could reveal 

without error, the location of the clay cap. Theoretically, one would drill exactly at the neck of 

the clay cap with this perfect information. The value with this perfect information is expressed as  

 
          ∑  (    )  (   

 
   (  ))

 

   

           
(5)  

which only differs from Vprior by the placement of the    
 

, which is now before the averaging 

operation: (∑   (    )
 
    ). Equation 5 suggests that we will have the information before we 



15 

 

choose a location for drilling (a), and therefore we can choose the alternative that has the highest 

value for each clay cap location. For both value outcome matrices (Figures 7 and 8), this is the 

value along the diagonal: $500,000. Then the average of all best outcomes for each of the clay 

cap locations is calculated. Since all three of the prior distributions are symmetric, Vperfect is 

$500,000 for all 6 combinations of prior uncertainty distributions and value outcomes (Table 4). 

Following Equation 1 (depicted graphically in Figure 1), the value of perfect information, is the 

difference between this and Vprior.  

                               (1) 

As seen in Table 4, information has the most value ($500,000) when the prior uncertainty 

is high (both the uniform prior and wider Gaussian) and when greater losses are experienced 

when one drills far from the target (Figure 7). Again, this is logically intuitive from the 

viewpoint of the decision-maker. 

Table 4: VOIperfect for different prior uncertainties (rows) and different individual value outcomes (columns 

Prior Distribution ↓   (  ): Gains drop quickly 

(Figure 7) 

  (  ): Gains drop off slowly 

(Figure 8) 

Uniform Prior $500,000 - $0 = $500,000 $500,000 - $0 = $500,000 

Gaussian Prior 

(μ=0m, σ
2
=1800) 

$500,000 - $0 = $500,000 $500,000 - $50,276= 

$449,723 

Gaussian Prior 

(μ=0m, σ
2
=900) 

$500,000 - $109,534 = 

$390,465 

$500,000 - $293,603= 

$206,396 

 

Methodology: Simulating MT Data Collection, Noise, Inversion and 

Interpretation of Clay Cap Location 

The positive VOIperfect results indicate that a new source of information could have value. 

However, as indicated in Figure 1, once we consider a specific source of information and include 
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its inaccuracies in locating the clay cap, the value of imperfect information (VOIimperfect) will be 

less than VOIperfect. For this demonstration, we want to assess the value of the magnetotellurics 

(MT) geophysical technique.  Consequently, we must have an estimate of MT’s reliability to 

locate the clay cap. We estimate the reliability by mimicking the data collection, inversion and 

interpretation processes. Specifically, we simulate the physics of the MT measurement on many 

geothermal reservoir models that represent possible exploration scenarios, corrupt the data to 

simulate measurement error, and then perform inversions of noisy MT data. Lastly, we interpret 

from the resulting resistivity images the location of the clay cap. 

The workflow to estimate the value with imperfect MT information can be described in 7 

steps.  

1. The MT response for each prior model is predicted using the electromagnetic simulation 

MARE2DEM (Key and Ovall, 2011). The forward response is represented by function 

 ( ) and the dataset for each prior model by   .  

     ( (  ))          

    

(6)  

Frequencies between 0.001 and 1000 Hz (21 frequencies total, 3-4 per decade) are 

observed at 21 receiver locations. The line of MT receivers covers -5,000m to +5,000m. 

Therefore for all N locations, the entire clay cap is covered. 

2. 4% random Gaussian noise is added to all of the N (each of the prior models) MT 

forward responses. Different seeds are used to generate different random noise. t indexes 

the different “realizations” of noise, which is added to the same forward response. 

Therefore T*N noisy datasets are generated. 
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  ̃ 
( )
            

( )
  (   )                        (7)  

 

3. Geophysical inversions are performed using the T*N noisy data set; T=5 inverted 

electrical resistivity models ( ̃ 
( )

) are obtained for every prior model (justification for 

T=5 will be explained in step 4). Figure 9 includes 3 prior models (first column) and their 

respective inversion models (last column). 

  ̃ 
( )
    ( ̃ 

( )
)                 

    

(8)  

4. For each inversion result, we use an automatic interpretation algorithm (denoted 

by function  ( )) to locate the clay cap “throat” at 5 depth locations (represented by index 

k ) spanning the thickness of the 500m clay cap neck. Therefore, for each inversion 

image, an interpretation of the lateral location of the clay cap neck is made at the 

following depths: {1.1, 1.2, 1.3, 1.4, 1.5}km. Figure 10 shows the automatic picks at 

these depths for one example inversion image; these picks are represented by  ̃ 
(   ).  

  ̃ 
(   )   ( ̃ 

( )
)                             

    

(9)  

The lower resistivity region ( ̃ <10
1.7

 or 50 Ohm-m; the darker colors of Figure 10) 

represents the clay cap or alteration. Therefore, the interpreted clay cap “throat” 

locations,  ̃ 
(   ) , are the lateral locations of maximum resistivity (representing the apex 

of the isotherm) within this lower resistivity region. This interpretation algorithm allows 

for different lateral locations to be chosen at the 5 fixed depths given above. This is a 
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significant assumption that the depths are known. Future work, will improve this 

algorithm to allow for uncertainty in the depth interpretation.  

A test inversion was run for T=15 for  (    ), and the statistics of the 

interpretations  ̃  were comparable for T=5 (i.e., the mean and variance of the 

interpretations were the same).  

5. The data likelihood/reliability is calculated by comparing the interpreted location of clay 

cap in the inverted image ( ̃ 
( )) to its prior model’s original location (  

( )). 

   ( ̃   ̃ 
(   )     )                            (10)  

6. We then use Bayes rule to estimate the probability of the actual clay cap location given 

an interpreted clay location  ̃ 
( ). This is the information posterior distribution. 

   (      ̃   ̃ 
(   ))                            (11)  

How the reliability and information posterior are calculated will be further explained later 

in this section. 

7. Lastly, the value with imperfect information (Vimperfect) is calculated using the information 

posterior. 

 
           ∑  ( ̃   ̃ )

 

   

{   
 
[∑  (      ̃   ̃ )  (  ) 

  

   

]}   

           

(12)  

 

Table 5 is one way to visualize the information posterior calculated in Step 6 (Equation 

11).  The rows represent the actual or true clay cap location and the columns represent the 
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interpreted locations. The frequency (count per each row-column combination) is calculated and 

used in the value with imperfect information (Vimperfect) expression (Equation 12).  The sum of 

each column will be 1. 

Table 5: Information content of MT to decipher location of clay cap. 

Interpreted 

locations→ 

 

True locations ↓ 

Interpret Clay Cap 

at x=+3500m 

(j=1) 

Interpret Clay Cap 

at x=+3000m 

(j=2) 

… Interpret Clay Cap 

at 

x= -3500m 

(j=N) 

Clay Cap @  

x= +3500m 

(i=1) 

  (        ̃   ̃   )   (        ̃   ̃   ) …   (        ̃   ̃   ) 

Clay Cap @  

x= +3000m 

(i=2) 

  (        ̃   ̃   )   (        ̃   ̃   ) …   (        ̃   ̃   ) 

⁞     

Clay Cap @  

x= -3500m 

(i=N) 

  (        ̃   ̃   )   (        ̃   ̃   ) …   (        ̃   ̃   ) 

 

The value with imperfect information Vimperfect (Equation 12) uses the information 

posterior as a “misinterpretation rate:” accounting for how frequently the interpretation of the 

MT images may correctly or incorrectly locate the clay cap. With this interpretation of the clay 

location  ̃  from the information, the alternative with the highest outcome can be selected (   
 

 

in Equation 12). This is calculated for every possible interpretation (index j) and these are 

weighted by the data marginal,   ( ̃   ̃ 
(   ))  which accounts for how often that interpretation 

may occur.   

The asymmetry of the true clay cap structure should be noted here as it affects the 

inversion, interpretation, and ultimately the calculated information posterior. Notice in Figure 5 

how the neck of the clay cap is centered to the west (left) of structure.  The center of mass of all 

the models is 350m to the east (right) of the centerline of neck location.    
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With this in mind, the information posterior values for this example, shown in Figure 11, 

are reasonable: a visual bias of misinterpretations is seen to the right of the diagonal representing 

that the neck is interpreted to the east its actual location. In this example, the inversion and 

interpretation of the MT data indicate that clay caps at x= -3,000m and x= -1,000m will always 

be correctly located; this is indicated by the 100% in the diagonal.  Interpretations from 

inversions for all other locations will produce some erroneous locations.   

Two Vimperfect measures can be calculated using the two value outcome matrices of Figure 

7 and 8. These are shown in the first row Table 6 (the 2
nd

 and 3
rd

 row display Vimperfect for results 

explained in the next section). As expected (see conceptual graphic in Figure 1), both of these 

Vimperfect’s are lower than Vperfect of $500,000 (Equation 5).  Also, Vimperfect is lower when the less 

“forgiving” value outcome matrix (Figure 7) is used. When the interpreted location doesn’t 

match the actual location, this matrix will create larger losses and consequently a lower Vimperfect 

compared to the case when Figure 8 is used.  

Table 6: Vimperfect  results two different value outcome matrices (Figures 7 and 8) and different prior models (rows). 

   (  ): Gains drop quickly 

(Figure 7) 

  (  ): Gains drop off slowly 

(Figure 8) 

Vimperfect: Clay Cap only $368,533 $436,394 

Vimperfect: Clay Cap & Sinter $350,133. $432,464 

Vimperfect: Deeper Clay Cap & 

Sinters to the East 

$167,022 $268,261 

 

Results: Value of Imperfect Information 

Now the value with imperfect information, Vimperfect, can be put into the VOI equation 

(Equation 1) to calculate the value of imperfect information VOIimperfect: 
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                                    (13)  

Six different VOIimperfect’s are calculated using the previous Vprior (Table 3) and the two 

Vimperfect’s (Table 6).  These are shown in Table 7. The value of imperfect information is highest 

($436,394) when the prior uncertainty of the clay cap location is highest (uniform prior and 

Gaussian with σ2
=1800) and the penalties for drilling far from the clay cap are more forgiving 

(Figure 8). Information from MT should have more value when our ignorance is highest and the 

risk for costly outcomes from decisions is greater. However, once the fallibility of the MT 

technique is considered, the final VOI depends on both Vimperfect and Vprior. As seen in Table 7, 

VOIimperfect is higher for the more forgiving outcomes; this is because misinterpretations are 

punished less for this value matrix. Conversely, the value of imperfect information is lowest 

($142,790) when the Vprior is greatest (Gaussian with σ2
=900) and drilling farther from the actual 

clay cap results in a smaller economic loss.  

Table 7: VOIimperfect results for models with clay caps only 

VOIimperfect   (  ): Gains drop quickly 

(Figure 7) 

  (  ): Gains drop off slowly 

(Figure 8) 

Uniform Prior $368,533 - $0 = $368,533 $436,394 - $0 =$436,394 

Gaussian Prior  

(μ=0m, σ
2
=1800) 

$368,533 - $0 = $368,533 $436,394 - $50,276 =$386,118 

Gaussian Prior  

(μ=0m, σ
2
=900) 

$368,533 - $109,534 = $258,998 $436,394 - $293,603 = $142,790 

 

Adding complexity to the prior models: the conductive, inactive sinter 

We repeat the workflow described in Section 3, but we add some complexity to the prior 

models. Figure 12 depicts an inactive sinter above and to the east of the clay cap (the orange-

colored feature). Sinters are a siliceous or calcareous deposit precipitated from mineral springs, 
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and in Figure 3 (Cumming, 2009) it is hypothesized to have a lower resistivity (5 Ohm-m) than 

that of the clay cap (10 Ohm-m). 

 

The sinter will impact the inversions and more importantly the interpretation of where the 

neck of the clay cap is. Figure 13 is the inversion result of Figure 12.  We see that the MT image 

indicates the presence of the low resistivity sinter but does not perfectly resolve its location.  If 

we compare it to the inversion result without the sinter (Figure 9), we see that the area of lower 

resistivity (warmer colors) has now shifted to the east (right) due to the sinters location. 

 

MT inversions and interpretations are performed for models including a sinter at all N=15 

locations as explained in Section 3. Then, the information posterior (shown in Figure 14) is 

calculated using prior models that include this sinter. If we compare it to the information 

posterior from models with no sinter (Figure 11), we see a visible shift from the diagonal to the 

right.  Recall how the automatic interpretations are made: the location of the maximum 

resistivity is chosen from within the minimum resistivity region (representing the clay cap or 

alteration).  Therefore, since the minimum resistivity region (the “warm colors area”) has shift 

east (right), the interpreted clay cap “throat” location has now shifted east (right). The other 

significant difference is seen in the column of interpreted location  ̃         . This column 

indicates that none of the interpretations resulted in a throat at  ̃         . This will be 

reflected in the data marginal:   ( ̃         )   .  

 

Vimperfect (Equation 12) is calculated using this information posterior from the models with 

sinters and the two value outcome matrices. These are shown in the second row of Table 6. 

Vimperfect has decreased for both value outcomes (columns of Table 6) compared to the cases 
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where only the clay cap was modeled (row 1 of Table 6). This is what one would expect given 

the visible shift in the information posterior which includes the effect of the sinter (Figure 14). 

The subsequent VOIimperfect for three different Vpriors are shown in Table 8. 

Table 8: VOIimperfect results for models with clay cap and sinters. 

VOIimperfect   (  ): Gains drop quickly 

(Figure 7) 

  (  ): Gains drop off slowly 

(Figure 8) 

Uniform Prior $350,133 - $0 = $350,133 $432,464- $0 = $432,464 

Gaussian Prior 

(μ=0m, σ
2
=1800) 

$350,133- $0 = $350,133 $432,464- $50,276 = $382,187 

Gaussian Prior 

(μ=0m, σ
2
=900) 

$350,133 - $109,534 = $240,598 $432,464 - $293,603= $138,860 

 

Deeper targets: dipping eastward clay cap 

Suppose that the prior geological information postulates that if a clay cap exists in the 

eastern part of the considered location, it will be deeper than if it is in the extreme west.  This 

could be due to many different geological scenarios, such as local variations in mineralogy 

which cause the fractures to plug fractures more in the east than the west, causing the clay cap to 

form deeper.  Or perhaps the uplift regime would give reason to expect shallower clay caps to 

develop in the west. Figure 15 graphically demonstrates how the clay cap will be incrementally 

deeper with increasing eastern location.  In our example, the clay cap and sinter are placed 100m 

deeper every 500m to the east. 

At x= -2,500m the model is 200m deeper than its original location, and at x= +2,500m 

the model is 1,200m deeper than its original location. The top row of Figure 16 shows the 

inversion results for the clay cap and sinters of these two lateral locations at their original depths.  

The second row shows the inversion results for these same lateral locations but for the two 

increased depths.  Even for -2,500m (only 200m deeper) we see that the MT inverted image does 
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recover electrical resistivities lower than 10 ohm-m. The second column shows that the 1,200m 

deeper clay cap and sinter is not resolved at all. 

 

In fact, the automatic interpretation does not identify any area of lower resistivity for clay 

cap’s at    ≥ +2,500m.  We account for this in the information posterior in the following way. 

We assume that for                               an interpretation    is equally likely at 

any of the N particular lateral locations:    ( ̃   ̃      )  
 

 
. This is then carried over into 

the information posterior, such that every interpretation has some probability of actually 

representing clay cap locations of                              .  

Figure 17 illustrates the information posterior for these dipping clay cap and sinters. Only 

four diagonal locations have non-zero probability (not including  

                              since no interpretation could be made from these 

inversions). Recall that the diagonal represents the frequency at which a correct clay cap location 

is made from the interpretation of the inversion image. Compare this to 12 non-zero diagonal 

probabilities for the original case where no sinter existed. The largest difference in the 

information posterior relative to the two others, is the probability of a clay cap to truly be located 

at one of the three most eastern and deepest clay caps (                              ) 

given any of the interpretations (     ). This is a result of the inability of the MT technique to 

resolve the three deepest clay caps. 

 

Table 9 contains the VOIimperfect results for the clay cap and sinters with varying depths. 

These VOIimperfect values are much less than the previous values (Table 7 and Table 8). VOIimperfect 
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= 0 for this case when the prior uncertainty is the least (μ=0m, σ2
=900) and smaller economic 

losses are expected. 

Table 9: VOIimperfect results for models with clay cap and sinters that have increasing depth to the east. 

 VOIimperfect   (  ): Gains drop quickly 

(Figure 7) 

  (  ): Gains drop off slowly 

(Figure 8) 

Uniform Prior $167,022 - $0 = $167,022 $268,261- $0  = $268,261 

Gaussian Prior  

(μ=0m, σ
2
=1800) 

$167,022 - $0 = $167,022 $268,261- $50,276 = $217,984 

Gaussian Prior  

(μ=0m, σ
2
=900) 

$167,022 - $109,534 = $57,487 $268,261- $293,603 =  $0 

 

Accounting for no resource under clay cap 

Up until now, we have made a very significant assumption that a resource does exist 

under the clay cap:   (      )   .  Now we will account for the probability of no resource 

existing under the clay cap. This is represented as the second uncertainty in the decision tree of 

Figure 4. We link each combination of prior model and decision alternative to two possible value 

outcomes: the value outcome if there is a resource (    ) or not (    ). The average of the two 

now replaces the quantity of Equation 3: 

   
( )(  )    (      )   

( )
(    )    (      )  

( )(    )     

                   

(14)  

where   (        ) is the probability of an economic resource existing under the clay cap. 

For now, we assume that the resistivity structure would remain the same whether a resource 

exists or not under the clay cap since the clay cap is representative of the historical temperature 

(see Section 1). Table 10 demonstrates how the value of information decreases with decreasing 

probability of occurrence of an economic reservoir. 
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Table 10: VOIimperfect for different probabilities of an economic resource occurring under the clay cap. 

VOIimperfect 

  (  ): Gains 

drop quickly 

(Figure 7) 

  (      ) = 1.0   (      ) = 0.7   (      ) = 0.5   (      )= 0.3 

Uniform Prior $368,533 - $0 = 

$368,533 

$167,973 - $0 = 

$167,973 

$34,266 - $0 = 

$34,266 

$0 -$0 = $0 

Gaussian Prior  

(μ=0m, σ
2
=1800) 

$368,533 - $0 = 

$368,533 

$167,973 - $0 = 

$167,973 

$34,266 - $0 = 

$34,266 

$0 -$0 = $0 

Gaussian Prior  

(μ=0m, σ
2
=900) 

$368,533 - $109,534 

= $258,998 

$167,973 - $0 = 

$167,973 

$34,266 - $0 = 

$34,266 

$0 -$0 = $0 

 

Conclusions and Discussion 

Our results show how the value of information depends on four factors. We identify these 

conclusions and discuss the limitations of how each was presented in this work. 

The reliability of the information from MT: data, inversion & interpretation  

If we compare Table 4 to either Table 7, Table 8 or Table 9, we see the impact of the 

“imperfect MT images.” Because of inaccuracies introduced from the added noise, inversion, 

interpretation, and MT’s limited resolution, we won’t always perfectly identify the clay cap’s 

location. We account for this by estimating MT’s reliability (and in turn the information 

posterior) and calculating the value of imperfect information (VOIimperfect). First, the inversion 

technique uses a regularization scheme based on minimum roughness to stabilize the inversion. 

This approach produces smooth images where the structural features are smeared and accurate 

shape information is lost. Second, MT’s ability to resolve the throat of the clay cap was 

diminished when a conductor of 5 ohm-m (representing a possible sinter) was included.  Third, 

the information posterior reflected increased inaccuracy when the depth of the structure (clay 

cap) was increased incrementally. This is consistent with the loss of resolution with depth that is 

observed with all surface-based geophysical surveys. 
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The VOI results are very dependent on the automatic interpretation that was used to 

identify the clay throat location in every inversion (described in the Methodology Section). 

Interpretations are usually made by professionals with expertise in the technique and the 

particular location being imaged. Modifications could and should be made for specific 

applications.  

We remind our readers that the objective of the study is to develop a VOI method that 

can evaluate spatial information from geophysical techniques, including the effects of 2D 

inversion. We chose to add complexity (sinter and increasing depths) to demonstrate the ability 

of the VOI methodology to incorporate geophysical limitations, including non-uniqueness, and 

lack of sensitivity and resolution. The slight asymmetry of clay cap first gave a slight bias to 

interpreting the location to the east of the actual location. This was further compounded when a 

sinter was added to the east, and when the depth of the target increased with increasing lateral 

location to the east. For real applications, the goal would be to represent the geologic structures 

deemed plausible (based on a priori information) for a particular exploration area.   

The description of the prior uncertainty 

Table 3 summarizes the three different Vprior’s calculated to demonstrate the role Vprior 

plays in the VOI assessment. It intuitively makes sense that with greater prior uncertainty (i.e. 

the uniform distribution), a new source of information such as electrical resistivity images 

computed from MT data will have more potential to provide value to decision-makers because 

the Vprior is lower (Figure 1). Our results confirmed this expectation. 

However, this expectation is not a universal law. Sato (2011) summarizes some of the 

counterintuitive aspects of VOI, one being that VOI does not necessarily increase as the prior 
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uncertainty increases (Gould, 1974). Our intent when evaluating three possible prior uncertainty 

models (Figure 6) was to provide the reader with some intuition about the VOI metric. However, 

we do not claim nor was it our intent is to provide a comprehensive study of the relationship of 

the prior uncertainty and VOI.  

The value outcomes (Figures 7 and 8) 

The value outcomes represent the estimated gains and losses due to the combination of 

the true location of the clay cap and the choice of drilling location. The value outcomes of Figure 

7 penalize drilling decisions that are ≥1,500m from the actual cap. In this situation, the value of 

perfect information will have more value when using this value outcome matrix versus that of 

Figure 8 since it can help us avoid costly outcomes. This is seen in Table 4. However, once the 

fallibility of the MT inversions are considered, the final VOI depends on both Vimperfect and Vprior. 

As seen in Table 7, VOIimperfect is higher for the more forgiving value outcomes; this is because 

misinterpretations are punished less in this case. However, the largest Vprior occurs using a tighter 

Gaussian and the more forgiving value outcomes; therefore, VOIimperfect is higher for the less 

forgiving value outcomes for this prior uncertainty.  

We have made an important assumption that the decision-maker is risk-neutral (not risk-

adverse or risk-prone), thus assuming that the decision-maker’s utility function is linear and the 

cash equivalent is equal to the expected value (Bratvold et al., 2009; Pratt, et al., 1995).  More 

complicated risk-attitudes and preferences for certain decision alternatives could be incorporated. 

Again this is outside the scope of our study.  
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The strength of the relationship between a clay cap and an economic 

geothermal reservoir  

Fundamental to the VOI paradigm is that the information source must be sensitive to the 

parameter that affects the outcome of the decision. The last set of results varied the probability of 

that clay cap presence is correlated with the existence of an economic geothermal resource. As 

expected, the smaller the probability of a resource existing below a clay cap (thus a smaller 

chance of a high-valued outcome), the lower the value of information. This prior probability 

should come from geologist, drilling engineer or another expert in the geothermal conditions of a 

particular locale. 

For this example, VOI increases when the prior uncertainty is higher and the value 

outcomes decrease quickly for when one drills far from the target clay cap. It should be noted 

that these results are highly dependent on the framing of the decision problem. Here we focus on 

hidden resources and assume that a clay cap is indicative of a possible geothermal source. Many 

more geothermal possibilities could be included, such as a low-enthalpy system, in which there 

would be no clay cap.  

Possible applications to current oil topics 

Lastly, we like to remind readers of the broader topics that this methodology is 

applicable. An area where VOI could be useful is determining if ocean bottom nodes (OBN) 

provide significant improved efficacy versus the conventional 3D seismic survey. By evaluating 

the VOI of each, decision-makers could justify (or not) the significant cost increase for utilizing 

OBN. 
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VOI quantifies how relevant and reliable any particular information source is, given a 

decision with an uncertain outcome. VOI is a powerful technique that can be used to justify the 

costs of collecting the new, proposed data. We have provided a flexible framework that includes 

the spatial uncertainty in the decision and the information itself. This methodology can be 

applied to multiple subsurface resource decisions and geophysical techniques to assess the 

possible gain of knowledge. 
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Figure Captions 

 

Figure 1: The outcome-uncertainty continuum that graphically represents the concepts behind 

VOI. Modified from:  Institute of Medicine (2013).  

 

Figure 2: Conceptualization of blind geothermal resource where no surface feature exists to 

demonstrate existence of a possible resource (from Cummings 2009)  
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Figure 3: Conceptual model of electrical resistivity for a hidden geothermal resource (from 

Cumming, 2009)  

 

Figure 4: Decision tree where blue squares depict the spatial decision alternatives and the nodes 

depict both the uncertainty of the clay cap locations and the resource existence. Lastly, the 

unique combination of these alternatives and uncertainties result in an outcome measured in 

value (diamonds).  
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Figure 5: One realization of the electrical resistivity model representing the hidden resource. The 

dark grey cap represents the light grey 10 Ohm-m layer in Figure 3. The white layer is the 

air and the light grey is the background subsurface (100 Ohm-m).  
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Figure 6: 3 Different Prior Distributions used to test Vprior sensitivity  
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Figure 7: Value outcomes that drop off quickly (i.e. losses are experienced when drilling 

≥1,500m from actual clay cap). Rows represent the actual clay cap location and columns 

represent the drilling location (decision alternative). Lighter shades equals gain while darker 

shades equal loss.  

 

Figure 8: Value outcomes that drop off more slowly (i.e. losses are only experienced when one 

drills ≥2,000m from the actual clay cap location). Rows represent the actual clay cap 

location and columns represent the drilling location (decision alternative). Lighter shades 

equal gain while darker shades equal loss.  
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Figure 9: First column contains 3 prior models. The second column represents their respective 

inversion results. Clay cap located at a) x=0, b) x=+2500m and c) x=-2500m.  
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Figure 10: Example of interpreted lateral position (picks) at set depths = {1.1, 1.2, 1.3, 1.4, 1.5} 

km. The neck is interpreted to be at lateral locations within the warm color oval (rho < 

10^1.7) that have the highest electrical resistivity. Example shown here corresponds to true 

clay cap neck at 0m, and the interpretations are between -500 and 0m. Notice different grey 

scale limits to better show resistivity.  

 

Figure 11: Information posterior for models with clay caps at 15 locations. Each row represents 

actual or true clay cap (prior model) and the columns represent how frequently that inverted 

clay cap was interpreted at different locations (represented by symbol ~x). Each column 

sums to 100%.  
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Figure 12: One realization of the electrical resistivity model representing the hidden resource 

(dark grey, 10 Ohm-m clay cap) with a sinter (represented in black, 5 Ohm-m color).  
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Figure 13: One inversion result from model shown in Figure 11 which includes a sinter. Outline 

of true locations of clay cap and sinter in black.  

 

Figure 14: Information posterior for models with clay caps and sinters at 15 locations. Each row 

represents actual or true clay cap (prior model) and the columns represent how frequently 

that inverted clay cap was interpreted at different locations (represented by symbol ~x).  
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 Figure 15: Schematic showing how the clay caps increase in depth with increasing eastern 

location.  
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Figure 16: Inversion results for x=-2,500m (first column) and x=+2,500m (second column). The 

first row shows inversions where the clay caps are located at their original depths of 500 to 

1000m. The bottom row shows inversions where the clay caps are located at greater depths: 

200m and 1,200m deeper respectively.  

 

Figure 17: Information Posterior for models dipping with eastern lateral location of the clay cap 

and sinter.  

 


